15 research outputs found

    Pseudospectra, critical points and multiple eigenvalues of matrix polynomials

    Get PDF
    AbstractWe develop a general framework for perturbation analysis of matrix polynomials. More specifically, we show that the normed linear space Lm(Cn×n) of n-by-n matrix polynomials of degree at most m provides a natural framework for perturbation analysis of matrix polynomials in Lm(Cn×n). We present a family of natural norms on the space Lm(Cn×n) and show that the norms on the spaces Cm+1 and Cn×n play a crucial role in the perturbation analysis of matrix polynomials. We define pseudospectra of matrix polynomials in the general framework of the normed space Lm(Cn×n) and show that the pseudospectra of matrix polynomials well known in the literature follow as special cases. We analyze various properties of pseudospectra in the unified framework of the normed space Lm(Cn×n). We analyze critical points of backward errors of approximate eigenvalues of matrix polynomials and show that each critical point is a multiple eigenvalue of an appropriately perturbed polynomial. We show that common boundary points of components of pseudospectra of matrix polynomials are critical points. As a consequence, we show that a solution of Wilkinson’s problem for matrix polynomials can be read off from the pseudospectra of matrix polynomials

    L-structure least squares solutions of reduced biquaternion matrix equations with applications

    Full text link
    This paper presents a framework for computing the structure-constrained least squares solutions to the generalized reduced biquaternion matrix equations (RBMEs). The investigation focuses on three different matrix equations: a linear matrix equation with multiple unknown L-structures, a linear matrix equation with one unknown L-structure, and the general coupled linear matrix equations with one unknown L-structure. Our approach leverages the complex representation of reduced biquaternion matrices. To showcase the versatility of the developed framework, we utilize it to find structure-constrained solutions for complex and real matrix equations, broadening its applicability to various inverse problems. Specifically, we explore its utility in addressing partially described inverse eigenvalue problems (PDIEPs) and generalized PDIEPs. Our study concludes with numerical examples.Comment: 30 page

    Special least squares solutions of the reduced biquaternion matrix equation with applications

    Full text link
    This paper presents an efficient method for obtaining the least squares Hermitian solutions of the reduced biquaternion matrix equation (AXB,CXD)=(E,F)(AXB, CXD) = (E, F ). The method leverages the real representation of reduced biquaternion matrices. Furthermore, we establish the necessary and sufficient conditions for the existence and uniqueness of the Hermitian solution, along with a general expression for it. Notably, this approach differs from the one previously developed by Yuan et al. (2020)(2020), which relied on the complex representation of reduced biquaternion matrices. In contrast, our method exclusively employs real matrices and utilizes real arithmetic operations, resulting in enhanced efficiency. We also apply our developed framework to find the Hermitian solutions for the complex matrix equation (AXB,CXD)=(E,F)(AXB, CXD) = (E, F ), expanding its utility in addressing inverse problems. Specifically, we investigate its effectiveness in addressing partially described inverse eigenvalue problems. Finally, we provide numerical examples to demonstrate the effectiveness of our method and its superiority over the existing approach.Comment: 25 pages, 3 figure

    Algebraic technique for mixed least squares and total least squares problem in the reduced biquaternion algebra

    Full text link
    This paper presents the reduced biquaternion mixed least squares and total least squares (RBMTLS) method for solving an overdetermined system AXBAX \approx B in the reduced biquaternion algebra. The RBMTLS method is suitable when matrix BB and a few columns of matrix AA contain errors. By examining real representations of reduced biquaternion matrices, we investigate the conditions for the existence and uniqueness of the real RBMTLS solution and derive an explicit expression for the real RBMTLS solution. The proposed technique covers two special cases: the reduced biquaternion total least squares (RBTLS) method and the reduced biquaternion least squares (RBLS) method. Furthermore, the developed method is also used to find the best approximate solution to AXBAX \approx B over a complex field. Lastly, a numerical example is presented to support our findings.Comment: 19 pages, 3 figure

    Backward errors and pseudospectra for structured nonlinear eigenvalue problems

    Get PDF
    Minimal structured perturbations are constructed such that an approximate eigenpair of a nonlinear eigenvalue problem in homogeneous form is an exact eigenpair of an appropriately perturbed nonlinear matrix function. Structured and unstructured backward errors are compared. These results extend previous results for (structured) matrix polynomials to more general functions. Structured and unstructured pseudospectra for nonlinear eigenvalue problems are also discussed

    Perturbation analysis for palindromic and anti-palindromic nonlinear eigenvalue problems. ETNA - Electronic Transactions on Numerical Analysis

    No full text
    A structured backward error analysis for an approximate eigenpair of structured nonlinear matrix equations with T-palindromic, H-palindromic, T-anti-palindromic, and H-anti-palindromic structures is conducted. We construct a minimal structured perturbation in the Frobenius norm such that an approximate eigenpair becomes an exact eigenpair of an appropriately perturbed nonlinear matrix equation. The present work shows that our general framework extends existing results in the literature on the perturbation theory of matrix polynomials

    Perturbation analysis on matrix pencils for two specified eigenpairs of a semisimple eigenvalue with multiplicity two. ETNA - Electronic Transactions on Numerical Analysis

    No full text
    In this paper, we derive backward error formulas of two approximate eigenpairs of a semisimple eigenvalue with multiplicity two for structured and unstructured matrix pencils. We also construct the minimal structured perturbations with respect to the Frobenius norm such that these approximate eigenpairs become exact eigenpairs of an appropriately perturbed matrix pencil. The structures we consider include T-symmetric/T-skew-symmetric, Hermitian/skew-Hermitian, T-even/T-odd, and H-even/H-odd matrix pencils. Further, we establish various relationships between the backward error of a single approximate eigenpair and the backward error of two approximate eigenpairs of a semisimple eigenvalue with multiplicity two
    corecore